DIVERSIDADE DE MACRÓFITAS AQUÁTICAS NO ESTADO DE PERNAMBUCO: LEVANTAMENTO EM HERBÁRIO

Liliane Ferreira LIMA¹
Patrícia Barbosa LIMA²
Ricardo César SOARES JÚNIOR³
Rejane Magalhães de Mendonça PIMENTEL⁴
Carmen Sílvia ZICKEL⁵

RESUMO

As macrófitas aquáticas apresentam grande importância ecológica, principalmente por serem os principais produtores primários de matéria orgânica, fator de extrema importância para a manutenção das diversas formas de vida. Porém, apesar de sua importância estar bem enfatizada na literatura brasileira, país onde existem os maiores ecossistemas aquáticos continentais, as pesquisas sobre essas comunidades ainda são escassas. Assim, esse estudo objetiva realizar o levantamento das macrófitas aquáticas registradas no Herbário Professor Vasconcelos Sobrinho – UFRPE - visando identificar as espécies estabelecidas no interior ou nas margens de lagos, rios, riachos, várzeas e açudes. Foi listado um total de 31 famílias, 88 gêneros e 119 espécies; a família Cyperaceae apresentou maior número de gêneros e espécies. O gênero *Eleocharis* foi o mais abundante. Foi observado que 44,29% das espécies foram coletadas no Litoral, 14,76% na Zona da Mata, 8,05 % no Sertão e 4,69 % no Agreste. O número mais elevado de coletas na região litorânea pode estar relacionado ao fato da maior facilidade de acesso aos locais de coleta e ao interesse dos pesquisadores em áreas de reservatórios existentes nessas regiões.

Palavras-chave: hidrófitas, florística, diversidade.

ABSTRACT

The aquatic macrophytes have great ecological importance, mainly because they are the major producers of organic matter, extremely important factor for the maintenance of various forms of life. However, despite its importance is well emphasized in the Brazilian literature, country where exists the vast majority of freshwater ecosystems, the researches on these communities are still scarce. Therefore, this paper aims to survey the aquatic macrophytes recorded in the Professor Vasconcelos Sobrinho Herbarium – PEUFR - to identify the species established in or on the shores of lakes, rivers, streams, wetlands and ponds. Were listed a total of 31 families, 88 genera and 119 species in the family

¹ Graduação em Licenciatura Plena em Ciências Biológicas, Universidade Federal Rural de Pernambuco (UFRPE), Dois Irmãos, 52171-900, Recife-PE. E-mail: lilianef.lima@gmail.com.

² Graduação em Licenciatura Plena em Ciências Biológicas, UFRPE, Dois Irmãos, 52171-900, Recife-PE. Email: patriciablima@gmail.com.

³ Biólogo.

⁴ Professora da UFRPE, Laboratório de Fitomorfologia Funcional, Dois Irmãos, 52171-900, Recife-PE. E-mail: pimentel@db.ufrpe.br.

⁵ Professora da UFRPE, Laboratório de Florística de Ecossistemas Costeiros, Dois Irmãos, 52171-900, Recife-PE. E-mail: zickelbr@yahoo.com.

Cyperaceae presented the highest number of genera and species. The genus *Eleocharis* was the most abundant. It was observed that 44.29% of the species were collected in Coast, 14.76% in Forest, 8.05% in the Hinterland and 4.69% in Agreste. The higher number of samplings in the coastal region can be related to the greater facility to collect and to the interest of the researchers in reservoirs areas existent in these regions.

Key-words: hydrophytes, floristic, diversity.

1. INTRODUÇÃO

Macrófitas aquáticas são considerados vegetais que ocorrem desde brejos até ambientes verdadeiramente aquáticos (ESTEVES, 1988) e são visíveis a olho nu e cujas partes fotossinteticamente ativas estão permanentemente ou por alguns meses, em cada ano, submersas ou flutuantes na água (IRGANG & GASTAL JR., 1996). A importância ecológica dessa comunidade tem sido enfatizada por vários autores (WETZEL, 1983; CARPENTER & LODGE, 1986; ESTEVES & CAMARGO, 1986; HORNE & GOLDMAN, 1994), principalmente por serem os principais produtores de matéria orgânica, fator de extrema importância para a manutenção das diversas formas de vida (SCREMIN-DIAS et al., 1999), além de apresentarem um relevante papel na troca de nutrientes, podendo se tornar as principais controladoras da dinâmica de nutrientes no ecossistema (JUNK, 1980; POMPÊO & HENRY, 1996).

Essa comunidade aquática é economicamente atrativa e o excesso de biomassa vegetal produzida pode ser aproveitado na produção de papel (MORTON, 1975), na alimentação animal (JUNK, 1979; MOOZHIYIL & PALLAUF, 1986; CHIFAMBA, 1990; EL-SAYED, 1992), na produção de biogás (WOLVERTON & MACDONALD, 1978) e na fertilização de solos (OLIVEIRA et al., 1998). Na piscicultura, as macrófitas aquáticas podem ser aproveitadas como fertilizantes da água, auxiliando no aumento de organismos que participam da cadeia alimentar dos peixes (ESTEVES, 1998). No entanto, a vegetação aquática pode ser problemática, passando a ser encarada como daninha, em virtude do crescimento acentuado, podendo causar problemas para utilização antrópica dos ecossistemas aquáticos, como o comprometimento da navegação, esportes náuticos e na utilização do potencial hidroelétrico dos reservatórios (THOMAS & BINI, 2003).

Nos últimos anos, com o reconhecimento da importância e a atribuição de um conjunto de valores para as macrófitas aquáticas, houve um aumento de estudos relacionados a estas comunidades, as quais passaram a receber maior atenção dos pesquisadores de todo o mundo (ESTEVES, 1998). Porém, apesar desse grande avanço nas pesquisas com esse enfoque, no Brasil, país onde ocorre a maioria de ecossistemas

aquáticos continentais, elas ainda são escassas (ESTEVES, 1998), tornando a vegetação desses ambientes pouco conhecida, principalmente quando se trata do estado de Pernambuco.

Pompêo & Moschine (2003) comentam que, atualmente, apesar do crescente número de profissionais que se dedicam aos estudos dessas comunidades aquáticas, dos vários grupos de pesquisas distribuídos pelo território nacional e dos inúmeros trabalhos e discussões apresentados em congressos, simpósios e outros eventos publicados em revistas científicas, na prática, há poucos especialistas atuando continuamente no estudo dessa importante comunidade aquática no Brasil. E ainda, segundo esses autores, são necessários estudos básicos com macrófitas aquáticas que permitam conhecer o organismo e sua distribuição geográfica, bem como a diversidade de espécies existentes nos diferentes mananciais.

De acordo com Thomaz & Bine (2003), um dos tipos de estudo considerado importante é o levantamento florístico, o qual contribui para a quantificação da biodiversidade aquática de nossos ecossistemas. Atrelado a isso, pode-se ressaltar a importância das coleções depositadas em herbários, as quais refletem a diversidade de uma determinada região, além de conservarem o registro de um determinado táxon em uma localidade geográfica, servindo como meio de comprovação científica de sua existência.

Diante da importância dos estudos da flora aquática e da necessidade em aumentar o conhecimento de sua diversidade no estado de Pernambuco, o presente estudo objetivou produzir um *checklist* das macrófitas aquáticas ocorrentes nas margens de lagos, rios, riachos, várzeas e açudes e que foram registradas em um herbário reconhecido pela tradição nas coletas de plantas aquáticas ocorrentes no estado de Pernambuco.

2. MATERIAL E MÉTODOS

O levantamento das espécies foi realizado a partir da consulta ao acervo do Herbário Professor Vasconcelos Sobrinho (PEUFR), da Universidade Federal Rural de Pernambuco (UFRPE). Para tal, foram consideradas todas as plantas com registros de coleta no interior ou nas margens de lagos, rios, riachos, várzeas e açudes, considerando as diferentes formas de vida. Todas as espécies listadas estão distribuídas nas regiões fitogeográficas do estado: Zona da Mata, Litoral, Agreste e Sertão (ANDRADE-LIMA, 1966).

Após o levantamento dos nomes das espécies ocorrentes no herbário, verificou-se a sinonímia de cada espécie através do site do Missouri Botanical Garden, sendo a lista atualizada segundo a proposta de classificação APG II (2003).

3. RESULTADOS E DISCUSSÃO

No acervo do Herbário Professor Vasconcelos Sobrinho (PEUFR) está listado um total de 119 espécies, distribuídas em 88 gêneros e 31 famílias (Tab. 1).

Tabela 1. Listagem florística das espécies macrófitas aquáticas ocorrentes no estado de Pernambuco-Brasil. SN: Sem número de coleta.

FAMÍLIAS / ESPÉCIES	MUNICÍPIO	COLETOR, N° DE COLETA
Acanthaceae		
Beloperone sp.	Recife	E.B. Souza et al., 49
Dicliptera ciliaris Juss.	Caruaru	M. Sales et al., 457
Hygrophila costata Ness.	Recife	A. Lima, SN
Nelsonia brunelloides (Lam.) Kuntze	Recife	A. Lima, SN
Ruellia cf. paniculata L.	Maraial	M.S. Leite & J.F. Oliveira, 18
Ruellia sp.	Bonito	L.P. Félix et al., 6912
Thunbergia sp.	São Lourenço da Mata	E. Maranhão, 4
Alismataceae		
Echinodorus sp.	Petrolina	E.P. Heringer et al., 180
Apocynaceae		
Ditassa hastata Decne.	BR - PE- Maraial	A.M. Miranda, 1954
Marsdenia sp.	Ouricuri	E.P. Heringer, 440
Oxypetalum sp.	São Vicente Férrer	M.Oliveira, 113
Araceae		
Philodendron rudgeanum Schott	São Vicente Férrer	E.M.N. Ferraz, 267
Pistia stratiotes L.	Recife	I.B. Pontual, SN
Asteraceae		
Centratherum punctatum Cass.	Recife	E.B. Souza, 50
Conyza bonariensis (L.) Cronquist	Recife	V. Santos, 14
Conoclinium ballotaefolium (Kunth) Sch. Bip. ex Baker	Recife	F.F. Melo, 28
Emilia sagittata DC.	Recife	A.C. Souza, 189
Pluchea sagittalis (Lam.) Cabrera	Recife	J. Bastos, 179
Rolandra argentea Rottb.	Recife	A.C. Souza, 166
Spilanthes sp.	Recife	F.A. Carvalho, 1222
Synedrella nodiflora (L.) Gaertn.	Recife	A.C. Souza, 151

Vernonia scorpioides (Lam) Pers.	Recife	S.M.P. Assis, 19
Begoniaceae		
Begonia reniformis Dryand.	Caruaru São Vicente	E. Ferroz, 45
Begonia sp.	Férrer	E.M.N. Ferraz, 312
Boraginaceae		
Heliotropium indicum L.	Recife	J.R. Lemos, 1
Tournefortia bicolor Sv.	Recife	F. Gallindo et al., 341
Brassicaceae		
Capparis flexuosa (L.) L.	Custódia	M.J.N. Rodal et al., 4
Cleome longicarpa Eltis	Goiana	M.B. Costa & Silva et al., 1514
Cleome spinosa Jacq.	Salgueiro	M.F.A. Lucena et al., 579
Convolvulaceae		
Ipomoea sp.	Recife	J.R. Lemos, 3
Merremia aegiptia (L.) Urb.	Caruaru	A.M.S. Reis, 10
Cyperaceae		
Becquerelia cymosa Brongn.	São Vicente Férrer	E.M.N. Ferraz et al., 264
Calyptrocarya sp.	Paulista	A. Laurênio et al., 639
Cyperus uncinulatus Schrad. ex Nees	Recife	A. Laurênio et al., 549
Diplacrum longifolium (Griseb.) C.B. Clarke	Paulista	A. Laurênio et al., 626
Eleocharis barrosii Svenson	Entre Serra Talhada e Salgueiro	E.P. Heringer et. al., 682
Eleocharis elegans (Kunth) Roem. & Schult.	Recife	I. Pontual, 328
Eleocharis filiculmis Kunth	Tamandaré	M.F.A. Lucena, 884
Eleocharis geniculata (L.) Roem. & Schult.	Floresta	A.M. Miranda et al., 1963
Eleocharis interstincta (Vahl) Roem. & Schult.	Igarassu	E. M. Silva, 1
Eleocharis mutata (L.) Roem. & Schult.	Ibimirim	M. Grillo, SN
Fimbristylis cymosa (Lam.) R. Br.	Recife	A. Laurênio, 548
Fimbristylis sp.	Itamaracá	A. Laurênio et al., 915
Fuirena umbellata Rottb.	Caruaru	M. Oliveira et al., 286
Kyllinga pumila Michx.	Recife	M. Alves, 1395
Rhynchospora cephalotes (L.) Vahl	Recife	A. Laurênio et al., 936
Rhynchospora contracta (Nees) J. Raynal	Serra Talhada / Salgueiro	E.P. Heringer et al., 680
Rhynchospora pubera (Vahl) Boeck.	Paulista	A. Sarmento, 214
Rhynchospora tenuis Link	Ipojuca	E.A. Rocha, 500
Scleria bracteata Cav.	Recife	I. Pontual, 327

Scleria latifolia Sw.	Cabo	M. Alves, SN
Fabaceae (Caesalpinoideae)		
Chamaecrista sp.	Recife	J.R. Lemos, 7
Dialium guianense (Aubl.) Sandwith	São Vicente Férrer	E.M.N. Ferraz et al., 289
Fabaceae (Faboideae/Papilionoideae)		
Aeschynomene filosa Mart. ex Benth.	Vitória de Santo Antão	A.P.S. Gomes et al., 1514
Anadenanthera colubrina (Vell.) Brenan	Floresta	A.M. Miranda, SN
Desmodium tortuosum (Sw.) DC.	São Vicente Férrer	E.M.N. Ferraz et al., 414
Lonchocarpus sericeus (Poir.) Kunth ex DC.	Ouricuri	E.P. Heringer et al., 536
Stylosanthes gracilis Kunth	Recife	Z. Travassos, 98
Stylosanthes scabra Vogel	Recife	Z. Travassos, 99
Stylosanthes viscosa (L.) Sw.	Recife	Z. Travassos, 97
Fabaceae (Mimosoideae)		
Mimosa sepiaria Benth.	Recife	S. Vasconcelos, SN
Gentianaceae		
Iribachia alata (Aubl.) Maas	Recife	R. Lima, 862
Hydrocharitaceae		
Elodea canadensis Michx.	Olinda	J.A. Siqueira, 1
Lamiaceae		
Vitex megapotamiga (Spreng.) Moldenke	São Vicente Férrer	E.M.N, Ferraz, 286
Loganiaceae		
Spigelia sp.	Recife	R. Lima, 860
Lythraceae		
Cuphea carthagenensis (Jacq.)	Recife	E.B. Souza, 60
Cuphea circaeoides Sm. ex Sims	Ouricuri	D. Brasil, 426
Cuphea compostris Koehne	Ouricuri	D. Brasil, 429
Malvaceae		
Corchorus hirtus L.	Vitória de Sto. Antão	A. Laurênio, 1151
Hibiscus sp.	Tamandaré	M.F.A. Lucena, 894
Sida galheirensis Ulbr.	Ouricuri	E.P.L. Henriger, 495
Sidastrum multiflorum (Jacq.) Fryxell	Caruaru	A.M.S. Reis, 62
Triumfetta althaeoides Lam.	Rio Formoso	M.C. Tschá, 1303

Urena lobata L.	Recife	A. Lima, SN
Nymphaeaceae		
Nymphaea ampla var. plumieri Planch.	Recife	E.B. Souza, 53
Nymphaea sp.	Vitória de Santo Antão	A. Laurênio, 808
Onagraceae		
Ludwigia sp.	Vitória de Santo Antão	A. Laurênio, 795
Orquidaceae		
Ambrostoma tridactylum Reichb. F.	Bonito	D.S. Pimentel et al., 81
Anacleilium alagoensis Palst	Bonito	M.J. Campelo, 93
Poaceae		
Echinochloa polystachya (Kunth) Roberty	Belém de são Francisco	A. Lima, 51-902
Echinochloa colonum L. (Link.)	Santa Maria da Boa Vista	E.P. Heringer et al., 402
Echinochloa crus-pavonis (Kunth) Schult.	Paulista	A. Sarmento, 197
Eragrostis sp.	São Lourenço da Mata	V.C. Lima, SN
Eriochloa punctata (L.) Desv. ex Ham.	Recife	A. Lima, SN
Heleochloa schoenoides (L.) Host	Vila Velha de Rodão	A. Fernandes, SN
Polygonaceae		
Coccoloba confusa R.A. Howard	São Vicente	E.M.N. Ferraz, 508
Coccoloba ochreolata Wedd.	Férrer São Vicente	E.M.N. Ferraz, 276
Polygonum ferrugineum Wedd.	Férrer Jatinã	A. Lima, 2159
Polygonum hispidum Kunth	Floresta	A.M. Miranda, 1960
Polygonum punctatum H.B.K.	Recife	A. Lima, 1272
Rumex sp.	Buíque	J.S. Silva, 225
Ruprechtia laxiflora Meisn.	Custódia	M.J.N. Rodal, 6
Triplaris gardneriana Wedd	Floresta	A.M. Miranda, 1075
Ponthederiaceae		
Eichornia azurea (Sw.) Kunth	Recife	J. Vasconcelos, SN
Eichornia crassipes (Martius) Solms	São Lourenço da Mata	I. Pontual, 1535
Rubiaceae		
Borreria scabiosoides Cham. & Schltdl.	Recife	E.B. Souza, 59

Borreria sp.	Vitória de Santo Antão	A. Laurênio, 621
Coutarea hexandra (Jacq.) K. Schum.	Custódia	M.J.N. Rodal et. al., 13
Machaonia spinosa Cham. & Schltdl.	Parnamirim	D. Andrade-Lima et al., 1216
Mapouria corymbifera Müll. Arg	Recife	L. C. Gomes, 4
Psychotria deflexa DC.	São Vicente Férrer	E.M.N. Ferraz et al., 288
Psychotria erecta (Aubl.) Standl. & Steyerm.	São Vicente Férrer	E.M.N. Ferraz et al., 292
Scrophulariaceae		
Bacopa aquatica Aubl.	Maranguape Olinda	A. Lima, 1765
Bacopa monnieri (L.) Wettst.	Olinda	S. Tavares, 611
Lindernia crustácea (L.) F. Muele	Recife	S. Tavares, 610
Melasma melampyroides (Rich.) Pennell	Recife	R.C. Barreto, 343
Solanaceae	G~ I	
Brunfelsia cf. uniflora (Pohl) D. Don	São Lourenço da Mata	E.S. Silva, 48
Nicotiana glauca Graham	São Caetano	A.C.O. Silva, 6
Physalis neesiana Sendtn.	Santa Maria da Boa Vista	E.P. Heringer et al., 464
Solanum asperum Rich.	Vitória de Santo Antão	A. Laurênio, 595
Solanum baturitense Huber	São Vicente Férrer	M. Oliveira, 110
Solanum paludosum Moric.	Recife	D. Belo et al., 201
	Cabo de	A C
Solanum paniculatum L.	Santo Agostinho	A. Sacramento, 42
Solanum stipulaceum Roem Shult	Tamandaré	C.A.G. Camara, SN
Typhaceae		
Typha sp.	Flores	M. Grillo, SN
Verbenaceae		
Lantana camara L.	Caruaru	A.M.S. Reis, 122
Priva lappulacea (L.) Pers.	Recife	M.I.B. Loiola, 331
Stachytarpheta cayennensis (Rich.) Vahl	Recife	J. Bastos, 178
Xyridaceae		
Xyris jupicai L.C. Rich	Recife	A. Chiappeta, 342

Dentre os táxons listados, a família que apresentou maior número de espécies foi Cyperaceae, com 20 espécies, seguida de Fabaceae (10), Asteraceae (9), Polygonaceae (8), Solanaceae (8), Acanthaceae (7), Rubiaceae (7), Malvaceae (6), Poaceae (6), Scrophulariaceae (4) e Verbenaceae (4). As demais famílias apresentaram três, duas ou apenas uma espécie (Fig. 1).

A família Cyperaceae foi a mais representativa em número de gêneros (10), sendo *Eleocharis* o que apresentou maior número de espécies (Tab. 1). Matias *et al.* (2003), em uma análise quantitativa das espécies de macrófitas aquáticas em uma lagoa no estado do Ceará, observaram que as espécies mais frequentes pertenciam ao gênero *Eleocharis*, destacando-se a espécie *E. mutata*, a qual apresentou uma das maiores densidades e um dos maiores índices de valor de importância (IVI). Os representantes dessa família são perenes, dominando completamente os ambientes no período de redução da coluna de água (BOVE *et al.*, 2003). Isto pode estar relacionado à existência de estruturas propícias à reprodução vegetativa dessas espécies, tais como tubérculos, rizomas ou estolhos (GOETGHEBEUR, 1998). Essas características representam uma vantagem em relação às outras espécies, já que facilitam a reprodução desses vegetais, permitindo que eles dominem mais facilmente o ambiente.

De acordo com os registros de herbário, todas as espécies de *Eleocharis* inventariadas neste estudo (Tab. 1) foram, exclusivamente, encontradas em lagos, lagoas, margens de açudes e rios ou em locais alagados. Esses locais são comuns às espécies aquáticas do gênero, as quais são geralmente plantas emergentes ou raramente submersas, podendo ocorrer em brejos, cachoeiras, lagos, rios e/ou em solos úmidos (FARIA, 1998).

Algumas espécies como Eichornia azurea, E. crassipes, Polygonum ferrugineum, P. punctatum, P. hispidum, Elodea canadensis e Pistia stratiotes, bem como alguns gêneros como Typha, Echinodorus, Ipomoea, Rhynchospora, Cyperus, Spigelia, Nymphaea e Ludwigia podem ser encontrados em alguns estudos referentes às macrófitas aquáticas, tais como em Matias et al. (2003) no Ceará, Neves (2006) na Bahia e Lima et al. (2009ab) em reservatórios do estado de Pernambuco.

Foi observado que 44,29% das espécies foram coletadas no Litoral, 14,76% na Zona da Mata, 8,05 % no Sertão e 4,69 % no Agreste. Este elevado número de coletas na região litorânea pode estar relacionado ao fato da maior facilidade de acesso aos locais de coleta e à presença de pesquisadores das universidades que realizam estudos em áreas de reservatórios nessas regiões.

4. CONCLUSÃO

Levando-se em consideração que no Brasil ocorre a grande maioria dos ecossistemas aquáticos continentais (ESTEVES, 1998), ainda existe uma enorme lacuna a ser preenchida, principalmente quanto a estudos sobre a ecologia de macrófitas aquáticas, os quais são relativamente escassos (THOMAS & BINI, 2003). Dessa forma, estudos abordando o levantamento florístico ou das espécies de macrófitas aquáticas depositadas em acervos botânicos contribuem para a quantificação da riqueza aquática de nossos ecossistemas, visto que podem ser úteis para subsidiar outros estudos sobre essas comunidades no país.

Em virtude do número de gêneros e espécies encontradas nesse estudo, alguns comuns à flora aquática e também listados em outras pesquisas, é possível perceber uma diversidade considerável de espécies em áreas alagáveis e em alguns mananciais no estado de Pernambuco. Por isso, sugere-se a realização de mais estudos de levantamento florístico, visto que auxiliará na qualificação e quantificação da riqueza de macrófitas aquáticas existentes no estado.

4. REFERÊNCIAS

ANDRADE-LIMA, D. 1966. Vegetação. In: **IBGE. Atlas Nacional do Brasil, Conselho Nacional de Geografia**. Rio de Janeiro, 126p.

APG II. 2003. An update of the Angiosperm Phylogeny Group Classification for orders and families of flowering plants: APG II. **Botanical Journal of the Linnean Society**, v. 141, p. 399-436.

BOVE, C.P.; GIL, A.S.B.; MOREIRA, C.B.; BARROS DOS ANJOS, R.F. 2003. Hidrófitas fanerogâmicas de ecossistemas aquáticos temporários da planície costeira do estado do Rio de Janeiro, Brasil. **Acta Botanica Brasilica**. v. 17, n. 1, p. 119-135.

CARPENTER, S.R.; LODGE, D.M. 1986. Effects of submersed macrophytes on ecosystem processes. **Aquatic Botany**, v. 26, p. 341-370.

CHIFAMBA, P.C. 1990. Preference of *Tilapia rendalli* (Boulenger) for some species of aquatic plants. **Journal of Fish Biology**, v. 36, n. 5, p. 701-705.

EL-SAYED, A.F.M. 1992. Effects of substituting fish meal with *Azolla pinnata* in practical diets for fingerling and adult Nile tilapia *Oreochromis niloticus* L. **Aquaculture** and Fisheries and Management, v. 23, p. 167-173.

ESTEVES, F.A. 1998. **Fundamentos de Limnologia**. 2ª Ed. Rio de Janeiro: Interciência. 602p.

ESTEVES, F.A.; CAMARGO, A.F.M. 1986. Sobre o papel das macrófitas aquáticas na estocagem e ciclagem de nutrientes. **Acta Limnologica Brasiliensis**, v. 1, p. 273-298.

FARIA, A.D. 1998. O gênero *Eleocharis* R. Br. (Cyperaceae) no Estado de São Paulo. **Dissertação** (Mestrado em Biologia Vegetal). Universidade Estadual de Campinas. 150p.

GOETGHEBEUR, P. 1998. Cyperaceae. In: KUBITZKI, K. (Ed.) **The families and genera of vascular plants**. Springer, Berlin, pp. 141-190.

HORNE, A.J.; GOLDMAN, C.R. 1994. Limnology. McGraw-Hill Inc., New York. 576p.

IRGANG, B.E.; GASTAL JR., C.V.S. 1996. Macrófitas aquáticas da planície costeira do RS. UFRGS, Porto Alegre. 290p.

JUNK, W.J. 1979. Macrófitas aquáticas nas várzeas da Amazônia e possibilidades do seu uso na agropecuária. INPA, Manaus. 23p.

JUNK. W.J. 1980. Áreas inundáveis: Um desafio para Limnologia. **Acta Amazonica**, v. 4, n. 10, p. 775-795.

LIMA, L. F., MOURA JÚNIOR, E.G., SILVA, S.L.S, ZICKEL, C.S. 2009a. Levantamento de macrófitas aquáticas em reservatórios do Estado de Pernambuco – Brasil. In: IX Congresso de Ecologia do Brasil, **Anais**. SEB, São Lourenço.

LIMA, L. F., MOURA JÚNIOR, E.G., SILVA, S.L.S, ZICKEL, C.S. 2009b. Macrófitas aquáticas ocorrentes nos reservatórios de Arcoverde e Botafogo (PE, BRASIL). In: IX Congresso Nacional de Ecologia do Brasil, **Anais**. SEB, São Lourenço.

MATIAS, L.Q.; AMADO, E.R.; NUNES, E.P. 2003. Macrófitas aquáticas da lagoa de Jijoca de Jericoacoara, Ceará, Brasil. **Acta Botanica Brasilica**, v. 4, n. 17, p. 623-631.

MOOZHIYIL, M.; PALLAUF, J. 1986. Chemical composition of the water fern, *Salvinia molesta*, and it's potential as feed source for ruminants. **Economy Botany**, v. 3, n. 40, p. 375-383.

MORTON, J.F. 1975. Cattails (*Typha* spp.): Weed problem or potential crop? **Economy Botany**, v. 29, p. 7-29.

NEVES, E.L.; LEITE, K.R.B.; FRANÇA, F.; MELO, E. 2006. Plantas aquáticas vasculares em uma lagoa de planície costeira no município de Candeias, Bahia, Brasil. **Sitientibus, Série Ciências Biológicas**, v. 6, n. 1, p. 24-29.

OLIVEIRA, M.L.A.A.; NEVES, M.T.M.B.; STREHL, T.; RAMOS, R.L.D.; BUENO, O.L. 1988. Vegetação de macrófitos aquáticos das nascentes do Rio Gravataí (Banhado Grande e Banhado Chico Lomã), Rio Grande do Sul, Brasil – Levantamento Preliminar. **Iheringia, Série Botânica**, v. 38, p. 67-80.

POMPÊO M.L.M.; MOSCHINI-CARLOS, V. 2003. Macrófitas Aquáticas e Perifiton. Aspectos Ecológicos e Metodológicos. RIMA, São Carlos. 134p.

POMPÊO, M.L.M.; HENRY, R. 1996. Variação sazonal dos teores de N e P no sedimento do rio Paranapanema (zona de desembocadura na represa de Jurumirim, SP). In: I Simpósio de Ciências da Engenharia Ambiental, III Simpósio do Curso de Ciências da Engenharia Ambiental, Anais. CRHEA/EESC/USP, São Carlos. pp. 35-137.

SCREMIN-DIAS, E.; POTT, V.J.; SOUZA, P.R.; HORA, R.C. 1999. Nos Jardins Submersos da Bodoquena: Guia de Identificação das Plantas Aquáticas de Bonito e Região de Bonito/MS. UFMS, Campo Grande. 160p.

THOMAZ, S.M.; BINI, L.M. 2003. Análise crítica dos estudos sobre macrófitas aquáticas desenvolvidas no Brasil. In: THOMAZ, S.M.; BINI, L.M. (Eds). **Ecologia e manejo de macrófitas aquáticas**. EDUEM, Maringá. pp. 59-83.

WETZEL, R.G. 1983. Limnology. Saunders College Publishing, Philadelphia. 767p.

WOLVERTON, B.C.; MCDONALD, R.C. 1978. Bioaccumulation and detection of trace levels of cadmium in aquatic system by *Eichhornia crassips*. **Environmental Health Perspectives**, v. 27, p. 161-164.