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Resumo: O objetivo deste trabalho é avaliar os componentes 

do balanço de umidade e abordar os mecanismos físicos 

envolvidos na reciclagem de precipitação na bacia amazônica, 

utilizando as reanálises do European Centre for Medium-

Range Weather Forecasts – ECMWF (Era-Interim) para o 

período de 1980-2005. A reciclagem de precipitação refere-

se ao mecanismo de retroalimentação entre a superfície e a 

atmosfera no qual a quantidade de água evapotranspirada da 

superfície de uma determinada região retorna na forma de 

precipitação sobre a mesma região. Em média, 20% da 

precipitação total sobre a bacia amazônica é decorrente do 

processo de evapotranspiração local; indicando que, a 

contribuição local para a precipitação total representa um 

percentual significativo no balanço de água regional e 

desempenha um importante papel no ciclo hidrológico 

amazônico. Contudo, a variabilidade e as mudanças no 

sistema climático devido às forçantes antropogênicas, tais 

como o aumento na concentração dos gases de efeito estufa 

na atmosfera e as mudanças de uso e cobertura da terra (por 

exemplo, desflorestamento) podem afetar a reciclagem de 

precipitação. Embora os resultados apresentados tenham 

produzido novos conhecimentos acerca da interação entre os 

processos de superfície e o ciclo hidrológico, os efeitos da 

mudança climática antropogênica sobre a reciclagem de 

precipitação na bacia amazônica necessitam ainda ser 

investigados. 

Palavras-Chave: Interação Biosfera-Atmosfera; Balanço 

De Umidade; Evapotranspiração; Transporte De Umidade. 

Abstract: The objective of this study is to evaluate the water 

budget components and to address the physical mechanisms 

involved in precipitation recycling in the Amazon basin using 

the European Centre reanalysis for Medium-Range Weather 

Forecasts – ECMWF for period 1980-2005. Precipitation 

recycling refers to the feedback mechanism between the 

Earth’s surface and the atmosphere wherein the amount of 

water that is evapotranspired from a given region of the 

surface returns to the same area in the form of precipitation. 

Here we show, on average, 20% of the total rainfall in the 

basin is derived from local evapotranspiration processes 

indicating that the local contribution to the total precipitation 

represents a significant contribution to the regional water 

budget and plays an important role in the Amazon water cycle. 

However, the changes in the climate system due to 

anthropogenic forcings such as the increase in the 

concentration of greenhouse gases in the atmosphere and 

changes in land use and land cover (i.e. deforestation) can 

affect the precipitation recycling. Although the results 

presented here have produced new knowledge about the 

interactions between surface processes and the hydrologic 

cycle, the effects of anthropogenic climate change on the 

precipitation recycling in the Amazon basin requires further 

investigation. 

KeyWords: Biosphere-Atmosphere Interaction; Water 

Budget; Evapotranspiration; Moisture Transport 

 

 

1. Introduction 

The Amazon is the only large continuous extension of rainforest in the world. With an area of approximately 6.5 

million km2, it comprises 56% of the Earth's tropical forests and plays an important role in the exchanges of energy, 

moisture, and mass between the land surface and the atmosphere. Additionally, the Amazon forest provides key 

environmental services for the maintenance of regional and global climate, such as storage and absorption of excess 

atmospheric carbon and the transport of trace gases, aerosols, water vapor to remote regions, and of principle 

importance, the recycling of precipitation to maintain its ecosystems. The Amazon forest also acts as an indispensable 

source of heat for the global atmosphere through its intense evapotranspiration and latent heat release in the middle 

and upper tropical troposphere, contributing to the generation and maintenance of the atmospheric circulation on 
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regional and global scales (MARENGO, 2006; MALHI et al., 2008; NOBRE et al., 2009a,b; SATYAMURTY et al., 

2013). 

Regarding the water budget, the Amazon basin behaves like a sink for atmosphere moisture, receiving water vapor 

from oceanic origin transport as well as from evapotranspiration produced by the tropical forest. With respect to 

regional circulation, the Amazon is an important source of moisture contributing to the precipitation regime in the 

central, southern and southeastern regions of Brazil, as well as to northern Argentina, including the La Plata basin 

(MARENGO et al., 2004; MARENGO, 2004, 2005; VERA et al., 2006). Arraut and Satyamurty (2009) showed that 

the convective activity over southern Brazil and northern Argentina is strongly influenced by moisture transported 

by the low level jet (LLJ) east of the Andes across the southern boundary of the Amazon basin. 

The concept of precipitation recycling refers to the feedback mechanism between the surface and the atmosphere, 

where local evaporation contributes significantly to total precipitation in the same region. In other words, the 

precipitation recycling can be defined as the amount of water evapotranspired from a specific region of the earth's 

surface that returns to that same area in the form of precipitation (ROCHA et al., 2015, 2017). Using observational 

data (MOLION, 1975; MARQUES et al., 1977; BRUBAKER et al., 1993) and reanalysis from different 

meteorological centers (ELTAHIR and BRAS, 1994; TRENBERTH, 1999; COSTA and FOLEY, 1999; NÓBREGA 

et al., 2005; VAN DER ENT et al., 2010; SATYAMURTY et al., 2013; ROCHA et al., 2017) several studies were 

conducted in order to quantify and describe the distribution of precipitation recycling in different regions of the 

world. Although quantitatively different, these studies demonstrate that the recycling mechanism is a strong indicator 

of the importance of surface processes and climate in the hydrological cycle, and the climate sensitivity related to 

changes in these processes. However, given the importance of the Amazon to the water budget at regional and global 

scales, it is of fundamental importance to understanding the distribution of precipitation recycling in the Amazon 

basin. Thus, this article presents an observational study of the water budget components and precipitation recycling 

in the Amazon, addressing the physical mechanisms associated with the recycling process. 

 

2. Materials and Methods 

In this study, we use the method based on the atmospheric moisture balance as described by Brubaker et al. (1993) 

and Trenberth (1999) to quantify precipitation recycling. The ERA-Interim reanalysis dataset from the European 

Center for Medium-Range Weather Forecasts – ECMWF (DEE et al., 2011) for the period 1980-2005 was used to 

estimate the spatiotemporal variability of the water budget components and precipitation recycling in the Amazon 

basin. The reanalysis data of precipitation, evapotranspiration, pressure at mean sea level, the specific humidity of 

the air, and zonal and meridional wind speed at the levels of 1000, 925, 850, 700, 600, 500, 400 and 300 hPa at a 

1.0° × 1.0° resolution covering South America were used (http://apps.ecmwf.int/datasets/). 

 

2.1. Precipitation recycling method 

The method described by Brubaker et al. (1993) and Trenberth (1999) states that for a scale of length L, 

evapotranspiration E, and the total precipitation P for a given area, the vertically integrated water vapor flux F over 

the height Z entering (Fin) and exiting (Fout) the area (Figure 1) can be determined using equation 1. 

 

Figure 1: Conceptual diagram of the processes considered in precipitation recycling: total precipitation P (mmday-

1), evapotranspiration E (mmday-1), average water vapor flux (kg m-1 s-1) F where Fin and Fout are the vertically 

integrated water vapor fluxes (kgm-1s-1) that enter and leave the area respectively of scale of length L (km). Source: 

Adapted from Brubaker et al. (1993). 

http://apps.ecmwf.int/datasets/
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𝐹𝑜𝑢𝑡 =  𝐹𝑖𝑛 +(E+P)L (1) 

 

Where the average horizontal water vapor flux of the area is defined as: 

𝐹 = 0.5 (𝐹𝑖𝑛 +  𝐹𝑜𝑢𝑡) = 𝐹𝑖𝑛 + 0.5(𝐸 − 𝑃)𝐿 (2) 

 

In the method proposed by Brubaker et al. (1993) and Trenberth (1999), the total precipitation (P) in the region 

is partitioned into local source precipitation (Pl) and advective precipitation (Pa), namely: 

𝑃 = 𝑃𝑙 + 𝑃𝑙 (3) 

 

Thus, the average horizontal flux from the advected moisture for the region is given by: 

𝐹𝑖𝑛  − 0.5𝑃𝑎𝐿 (4) 

 

And the average horizontal flux from the local evaporation is given by: 

0.5(𝐸 − 𝑃𝑙)𝐿  (5) 

 

Assuming that the air is well mixed so that the ratio of precipitation due to advection versus that from 

evapotranspiration is proportional to the ratio between the flux of moisture advected and transpired, gives the 

following expression: 

𝑃𝑎

𝑃𝑙
=  

𝐹𝑖𝑛 −  0.5𝑃𝑎𝐿

0.5(𝐸 − 𝑃)𝐿
 

(6) 

 

Therefore, precipitation recycling (β) may be determined by: 

𝛽 =
𝑃𝑙

𝑃
=

𝐸𝐿

𝐸𝐿 + 2𝐹𝑖𝑛
 

(7) 

 

Using equation 2, the precipitation recycling (β) can be rewritten as follows: 

𝛽 =
𝐸𝐿

𝑃𝐿 + 2𝐹
 

(8) 

Therefore, the basic assumption of this method is that the atmosphere is well mixed and the change in the 

atmospheric storage of water vapor is negligible compared to the other terms. Brubaker et al. (1993) and Trenberth 

(1999) recommends using a length scale (L) of 2,750 km for the Amazon basin for the recycling estimation. 

 

3. Results and Discussion 

Most studies have shown that the precipitation recycling mechanism is strongly influenced by the total 

precipitation, surface evapotranspiration, and the water vapor transport over the region. This study evaluates the 

variability of the spatiotemporal components of the water budget and precipitation recycling in the Amazon basin for 

the domain area covering most of South America. 

 

3.1. Precipitation and evapotranspiration 

Figure 2 and Figure 3 show, respectively, the average seasonal distribution of rainfall and evapotranspiration on 

the South American continent (austral summer – December-January-February, DJF; austral autumn – March-April-

May, MAM; austral winter – Jun-July-August, JJA; austral spring – September-October-November, SON). In 

Amazon, rainfall shows significant spatiotemporal variability determined by the influence of different local scale, 

mesoscale, synoptic scale and large-scale systems acting in the region (MARENGO and NOBRE, 2009; NOBRE et 

al., 2009b). 
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The average annual rainfall is about 2,300 mm, featuring three core locations with abundant rainfall. The first 

located in the northwestern Amazon, with rainfall above 3,500 mm yr-1 associated with the condensation of humid 

air by orographic effect on the Andes Cordillera (MARENGO and NOBRE, 2009). The second precipitation 

maximum, located on the mouth of the Amazon River, is associated with the Intertropical Convergence Zone (ITCZ) 

and local circulations (sea breeze) related to instability lines that appear along the coast, especially at the end of the 

evening period (COHEN et al., 1995). The third center is located in the southern part of the Amazon region, especially 

during the months of January/February/March (austral summer), being influenced by the constant presence of 

convective clusters associated with frontal systems in the area of influence of the South Atlantic Convergence Zone 

(SACZ). 

Most of tropical and subtropical South America receives more than 50% of its total annual rainfall in austral 

summer, in the form of convective precipitation with strong seasonal and diurnal variation (NOBRE et al., 2009b; 

SATYAMURTY et al., 2013). At the seasonal scale, Figure 2d shows the beginning of the rainy season, or strong 

convective activity in the southern Amazon during the spring (SON). Observe that rainfall maxima located in the 

western and central part of the Amazon occur in DJF, associated with the position of the Bolivian High. In the fall 

(MAM), the band of maximum rainfall is located in the central Amazon, extending from the west of the basin to the 

mouth of the Amazon River. In JJA, the center of maximum precipitation moves to the north and is located about 

Central America, establishing the dry season (no major convective activity) in the central and southern Amazon, 

which are under the descending branch of the Hadley cell. However, in this period, the maximum precipitation occurs 

in the northern Amazon. The driest quarters in northern Brazil gradually change from September/October/November 

in the far north, to August/September/October, on a long latitudinal line from the west in the northeastern region of 

Brazil; to July/August/September in the valley of the Amazon basin, especially in the west, and to June/July/August 

in the southern part. 

Different studies point to the important role of vegetated surfaces, notably the Amazon rainforest, as a regional 

climate regulator factor to supply large quantity of water vapor into the atmosphere throughout the year through 

evapotranspiration (GASH et al., 1996). The evapotranspiration coming from the Amazon forest is one of the main 

sources of water vapor in both the basin itself and for remote regions, playing a key role in the generation of the 

rainfall process. Moreover, the contribution of local evapotranspiration to precipitation over the Amazon basin 

represents a significant portion of the regional water budget and plays a prominent role in the Amazon hydrological 

cycle, influencing the spatial patterns of soil moisture, productivity and the occurrence of events extremes, such as 

flooding and drought (ROCHA et al., 2009). Furthermore, this variable is directly associated with the recycling 

mechanism of precipitation over the continent. 

According to Figure 3d it is observed that evapotranspiration is close to that found in micrometeorological 

experiments in the Amazon, such as: Large Scale Biosphere-Atmosphere Experiment in Amazonia – LBA 

(AVISSAR and NOBRE, 2002), with values ranging between 3.5 and 4.0 mm day-1. The high evapotranspiration 

rates in the Amazon basin in SON and DJF are associated with greater availability of energy during the spring and 

summer seasons, respectively. During fall and austral winter, due to the seasonal variation of the ITCZ and the 

displacement of cloudiness band to the north, decreases the convective activity on the central and southern Amazon, 

increasing the incident solar radiation on the surface and consequently, evapotranspiration. 

 

3.2 Moisture transport and convergence 

Figure 4 and Figure 5 show, respectively, average seasonal vertically integrated water vapor flux and moisture 

convergence for South America during the four seasons. In DJF, air movement has a persistent low thermal region 

situated over the Chaco, between 20° and 30°S, associated with maximum cloud cover over the central Amazon and 

the Bolivian High plane, the period of the most active and intense SACZ. An important feature of the equatorial 

circulation during the summer and fall are the trade winds that transport moisture into the Amazon basin, associated 

with increased atmospheric pressure in the tropical North Atlantic Ocean. As stressed by Arraut and Satyamurty 

(2009), Arraut et al. (2012), Satyamurty et al. (2013) and Drumond et al. (2014) the water vapor flux from the 

equatorial Atlantic is the principal source of moisture for Amazônia. When the trade winds reach the Andes, the 

water vapor flux is diverted south and moisture, in turn, is transported from the Amazon to the South-Central Brazil, 

La Plata basin and northern Argentina through the low level jet (LLJ) channeled to the east of the mountain range 

(Figure 4a). During this period, the convective activity and precipitation in the central and southern Amazon (Figure 

2a) are associated with intense moisture converging on these areas (Figure 5a). The South American LLJ seems to 

occur throughout the year, carrying Amazon tropical rain air masses to the Mid-South of Brazil and northern 

Argentina, especially in the summer, and leading maritime tropical air masses of the South Atlantic Subtropical High 

(SASH) more often in the winter. 
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Drumond et al. (2008) adopted a Lagrangian method that identifies moisture contributions in the water budget of 

a region to investigate the main sources of moisture to Central Brazil and the La Plata basin during the period 2000-

2004. The results showed the importance of the southern tropical Atlantic as a moisture source for Central Brazil. 

The atmospheric circulation characteristics observed over tropical and subtropical South America during the austral 

summer configure what Arraut and Satyamurty (2009) and Nobre et al. (2009b) called the Summer Monsoon Regime 

in South America (SMRSA). The SMRSA weakens between March and May, when the convective activity (Figure 

5b) progresses towards the north. In this period, precipitation intensifies, especially in the northern Amazon and in 

the Northeast of Brazil (Figure 2b). 

 

 

Figure 2: Average seasonal precipitation (mm day-1) over South America using the reanalysis ERA-Interim 

(ECMWF) for the period 1980-2005: (a) summer–DJF; (b) autumn–MAM; (c) winter–JJA; (d) spring–SON. 
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Figure 3: Average seasonal evapotranspiration (mm day-1) over South America using the reanalysis ERA-Interim 

(ECMWF) for the period 1980-2005: (a) summer–DJF; (b) autumn–MAM; (c) winter–JJA; (d) spring–SON. 

 

In JJA, the seasonal circulation climatology at low levels (Figure 4c) shows that there is a convergence of the 

trade winds from the southeast and northeast transporting moisture to Central America, as well as to the east of 

Northeast Brazil and northwestern South America, which increases the precipitation in these areas. On the other 

hand, the moisture divergence is predominant over the southern Amazon and the central portion of the continent 

(Figure 5c), determining the reduction of convective activity and therefore precipitation, setting up the dry season in 

South America. 
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Figure 4: Average seasonal vertically integrated water vapor flux (kg m-1 s-1) over South America using the 

reanalysis ERA-Interim (ECMWF) for the period 1980-2005: (a) summer–DJF; (b) autumn–MAM; (c) winter–JJA; 

(d) spring–SON. 

 

3.3 Precipitation recycling 

The moisture which gives rise to precipitation over continental regions comes from two sources: (i) advection of 

water vapor originating from other regions by means of air mass movements and (ii) the local water vapor through 

evapotranspiration from the surface of the region. Evapotranspiration has a pronounced effect when the water vapor 

flux is less significant. The regional moisture transport depends on the atmospheric dynamics and moisture sources. 

Evapotranspiration, in turn, depends on the availability of moisture in the area or sub-surface (unsaturated region), 

which is evaporated directly or through transpiration from vegetation. Consequently, any change in land use, land 

cover, or climate that can modify these processes can affect the amount of precipitation in the region, as well as 

precipitation recycling. 
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Figure 5: Average seasonal moisture convergence (mm day-1) over South America using the reanalysis ERA-Interim 

(ECMWF) for the period 1980-2005: (a) summer–DJF; (b) autumn–MAM; (c) winter–JJA; (d) spring–SON. 

 

Figure 6a-d shows the seasonal average precipitation recycling over South America. In general, precipitation 

recycling is more intense in the central-south of the continent, being directly influenced by evapotranspiration in the 

region. In DJF, precipitation recycling is higher (lower) in the southern sector (north) of the Amazon basin associated 

with lower (higher) intensity of the water vapor flux and high (low) values of evapotranspiration. However, the 

regional maximum precipitation recycling is recorded in the La Plata basin, specifically in southern Brazil, Uruguay, 

eastern Paraguay and northeastern Argentina, an area where evapotranspiration has significant values and where the 

deintensification of the LLJ occurs, east of the Andes. 
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Figure 6: Average seasonal precipitation recycling (%) over South America using the reanalysis ERA-Interim 

(ECMWF) for the period 1980-2005: (a) summer–DJF; (b) autumn–MAM; (c) winter–JJA; (d) spring–SON. 

 

Precipitation recycling in the Amazon tends to increase from east to west due to reducing the intensity of the water 

vapor flux to the west. This pattern is clearly identified during the fall, where the largest recycling values were 

observed in southwestern Amazon basin, showing that the effect of increased evapotranspiration overlaps with the 

reduction of water vapor transport in the region. The maximum precipitation recycling observed on the continent 

occurred in the Pantanal and Southeast of Brazil and, according to Trenberth (1999), Nóbrega et al. (2005) and Rocha 

et al. (2017) were associated with evapotranspiration driven by high soil moisture content, and reduced moisture 

transport near SASH. 

In JJA, although over the northern Amazon the evapotranspiration, moisture convergence and precipitation have 

presented higher values, the increase in the intensity of moisture flux dominated and the precipitation recycling 

showed lower values (~ 16%) in relation to the southern Amazon (~ 28%). The maximum precipitation recycling 

observed over South America extended from the western Amazon basin to southeastern Brazil, including the 
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Pantanal, areas that are also associated with a deintensification of water vapor flux. Spring is the season where 

precipitation recycling showed the highest values in the Amazon Basin (~ 27%). The forest evapotranspiration, which 

is higher in this period, overlapped the effect of water vapor flux and presented itself as the leading factor for regional 

precipitation recycling. 

The average precipitation recycling values across South America ranged between 10% and 80% with extreme 

rates on the order of 70% to 80% over the Andes. Seasonally, the values decrease from summer to winter. The annual 

average for precipitation recycling in the Amazon basin was 22%, with values ranging from 50% in the southern 

portion to 10% in the northern portion. Based on the results of previous work and this study, it is estimated that 

precipitation recycling is on the order of 20-35% in the Amazon basin. Thus, of the total precipitation over the 

Amazon basin, approximately 20% is derived from local evapotranspiration processes, showing that the local 

contribution to the total precipitation is significant in the regional water budget. The advective contribution is more 

important for precipitation over the Amazon basin than the local evapotranspiration contribution. In other words, the 

moisture advection largely dominates the water vapor supply in the region, however, the role of local 

evapotranspiration is most important for precipitation recycling in southern basin. However, the variability and 

natural and/or anthropogenic climate system changes can affect the components of the water budget, and 

consequently, precipitation recycling in a significant way, influencing spatial soil moisture patterns, productivity, 

and the occurrence of extreme events such as droughts and floods. Although studies on precipitation recycling have 

produced new knowledge about the interactions between surface processes and the hydrologic cycle, the effects of 

climate change on the precipitation recycling in the Amazon basin need to be further investigated. 

 

4. Conclusions 

This work is an observational study of precipitation recycling in the Amazon basin, addressing the physical 

mechanisms involved in this process. Observational analysis was based on the European Centre for Medium-Range 

reanalysis Weather Forecasts – ECMWF (ERA-Interim), from 1980 to 2005. To estimate the precipitation recycling 

we used the method based on the water budget in the atmosphere described by Brubaker et al. (1993) and Trenberth 

(1999). It was found that, generally, the Amazon basin behaves like an atmospheric moisture sink, getting water 

vapor transported from the ocean and as forest evapotranspiration through precipitation recycling processes. On a 

regional scale, the Amazon is an important source of moisture contributing to the precipitation regime in other regions 

of South America. 

Quantification of the precipitation recycling mechanism is a strong indicator of the importance of surface 

processes and climate in the hydrological cycle, as well as the climate sensitivity related to changes in these processes. 

Generally, precipitation recycling in the Amazon basin was on the order of 22%, with values ranging from 10% in 

the northern portion to 50% in the southern portion. The results show that of the total rainfall in the Amazon basin, 

approximately 20% is derived from local evapotranspiration processes; indicating that the local contribution to the 

total precipitation represents a significant contribution to the regional water budget and plays an important role in the 

Amazon water cycle. The climatological recycling of rainfall over South America shows that the advective 

contribution is more important for precipitation over the Amazon, while in the south-central region of the continent 

the local contribution plays an important role in precipitation. However, the variability and changes in the climate 

system due to both natural variations (non-linear) inherent in the system and anthropogenic increases in the 

concentration of greenhouse gases in the atmosphere and changes in land use and land cover (i.e. deforestation, 

agricultural activities, desertification and urbanization), may adversely affect the dynamics of Amazonian 

ecosystems, reducing their ability to absorb carbon from the atmosphere, increasing the surface temperature by 

modifying the regional hydrologic cycle, influencing the spatial soil moisture patterns, the occurrence of extreme 

events (drought and flooding), and consequently affecting precipitation recycling. Although the results presented 

here produced new knowledge about the interaction between surface processes and the hydrologic cycle, the effects 

of variability and natural and anthropogenic climate change on precipitation recycling in the Amazon requires further 

investigation. 
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